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The concept of the Hagedorn thermostat, which was in-
troduced in [1], allowed us to explicitly demonstrate very
special thermodynamic properties of the systems with the
Hagedorn mass spectrum [2, 3] (H-systems hereafter):

ρH(m) = M−1 exp (m/TH) , (1)

where m is the mass of the hadron in question and TH is
the Hagedorn temperature, M is the normalization con-
stant with the dimension of the mass.

Here we study the equation of state (EOS) of N Hage-
dorn thermostats and its peculiar properties. This EOS
can be found directly from the microcanonical partition
of N hadrons with the mass spectrum (1):
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where the quantity ǫk(mk, pk) ≈ mk +
p2

k

2mk

denotes the
non-relativistic energy of the Hagedorn resonance with
the 3-momentum ~pk, whereas V and E denote the sys-
tem’s volume and energy, respectively.

The evaluation of the microcanonical partition (2) can
be done by the procedure used in [1]. Then the concen-
tration of the Hagedorn resonaces of mass m reads as
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This expression gives the equilibrium value of particle
density for H of mass m. For a known probability density
1/M of H states in mass, the energy/mass conservation

E =

mmax
∫

mmin

dm

M
N(m)

(

m +
3

2
TH

)

= V

mmax
∫

mmin

dm

M

(

mTH

2π

)
3

2

(

m +
3

2
TH

)

, (4)

determines an upper value mmax for the Hagedorn mass.
Given E, the total mass/energy of the initial H parti-

cle, Eq. (4) is an implicit equation for mass vs. E. The
physical implication of these results is interesting:

1) Since the Hagedorn is assumed to transform only into
other Hagedorns, a gas of Hagedorns must be at satu-
ration with itself, i.e. the concentrations of the various
masses below mmax cannot change with volume, and, of
course, the temperature remains fixed at TH ;

2) However, as the volume increases/decreases, the upper
cut-off mmax decreases/increases according to the con-

servation law expressed by (4). It can be shown that
for large volumes the total number of Hagedorns in the
system saturates (see Fig. 1. for details).

In any case, the distribution is dominated by the
largest Hagedorn mass mmax. We can also, trivially,
define the Hagedorn gas equation of state, which for
mmin = 0 acquires a simple form (P is the pressure)
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FIG. 1: A typical behavior of the total number of Hagedorns
Ntot for E = 4 GeV as function of the volume V . For large
volumes one can see the saturation due to energy conserva-
tion. The value of M was chosen to reproduce the number of
all hadronic resonances lighter then 1.8 GeV.

Here the constant γ is defined as γ =
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. From the equation of state (6)

one can determine the speed of sound cs as
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The latter vanishes in the high pressure limit or at small
volumes V → 0 and fixed E.
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